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ABSTRACT
In this paper, we investigated the reflection of thermoelastic plane
waves from the isothermal stress-free boundary of a homogeneous,
isotropic and thermally conducting solid half-space in the context
of the new linear theory of generalized thermoelasticity under heat
transfer with memory-dependent derivative. It has been found that
three types of basic waves consisting of two sets of coupled lon-
gitudinal waves and one independent vertically shear type wave
may travel with distinct phase speeds. The formulae for various
reflection coefficients are determined in case of an incident coupled
dilatational elastic wave at an isothermal stress-free boundary of the
medium. For an appropriate material, the reflection coefficients are
computed numerically and presented graphically for various values
of the angle of incidence and discussed the effect of various param-
eters of interest. At the end, the phase speeds and the attenuations
coefficients of the coupled longitudinal waves are shown graphically
to compare our results with the existing results.

ARTICLE HISTORY
Received 12 February 2019
Accepted 20 May 2019

KEYWORDS
Memory-dependent
derivative; plane waves;
dispersion; phase speeds and
attenuation; reflection

1. Introduction

Scott Blair’s model [1], which is basically a material model, includes a formula for memory
phenomena in various disciplines. The model takes the form

0Dα
t ε(t) = κσ(t), (1)

where 0Dα
t ε(t) denotes the fractional-order derivative which depends on the strain his-

tory from 0 to t. For integral value of α = n, 0Dα
t ε(t) = dnε(t)/dtn, and κ > 0 is a con-

stant. Equation (1) works not only in modeling viscoelastic materials, but also in modeling
biological kinetics with memory.

A fractional-order derivative is a generalization of an integer order derivative and inte-
gral. It originated from a letter of L’Hopital to Leibnitz in 1695 regarding the meaning of
the half-order derivative. The kernel function of a fractional derivative is termed the mem-
ory function, but it does not replicate any physical process. Imprecise physical meaning
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has been a big obstacle that keeps fractional derivatives lagging far behind the integer-
order calculus. There are several definitionsof a fractional derivative. TheRiemann–Liouville
derivative is one of the most standard definitions

0Dα
t ε(t) = 1

�(n − α)

dn

dtn

∫ t

0

ε(s)

(t − s)1+α−n ds, n − 1 ≤ α < n,

where �(·) is the Euler’s gamma function and n is an integer. A memory process gener-
ally consists of two stages: the first is short, with permanent retention at the beginning,
and it cannot be neglected in general, and the second is governed by the fractional model
Equation (1). The critical point between the fresh stage and theworking stage is usually not
the origin. This is quite different from the traditional fractionalmodels of one stage. The key
point is that the order of a fractional derivative is an index of memory. The dimensionless
form of the solution of Equation (1) is

E(η) = ηα − (η − 1)α , (2)

where η = t/tM and E(η) = ε(t)/εM, where εM is the strain at the end of time of creeping
t = tM. Equation (2) reveals that E(η) increases with an increase in α. The higher the value
of the index α, the slower is the forgetting during the process. In particular, at α = 0, E = 0,
meaning that ‘nothing is memorized’, and E=1 for α = 1 which means that ‘nothing is
forgotten’. Therefore, the fractional order α is basically termed as the index of the memory
effect.

For a standard creep and recovery process, the specimen is usually loaded under a con-
stant stress σ(t) = σ0 from 0 to tM, and the load is removed at the instant t = tM, then
σ(t) = 0 for t ≥ tM. If H(t) is the Heaviside function, Equation (1) takes the following form:

0Dα
t ε(t) = κσ0 (H(t)− H(t − tM)) ,

where 0Dα
t ε(t) is the Riemann–Liouville fractional-order derivative with zero initial condi-

tion. The superposition method gives the solution of the above equation as follows:

ε(t) = κσ0

�(1 + α)

[
tαH(t)− (t − tM)

αH(t − tM)
]
.

This is in agreement with the early observation of the behavior of some viscoelastic
materials.

The non-integral (fractional)-order derivatives and the fractional differential equations
have gained considerably more attention in the fields of applied sciences and various
engineering disciplines [1]. Gorenflo et al. [2], and Atanackovic et al. [3] provided diverse
theoretical advances and recent applications of fractional calculus. One hindrance to the
wider use of fractional-order methods by engineers is the absence of a simple geometric
picture for the fractional-order integral. There are several definitions of fractional deriva-
tives (e.g. Riemann–Liouville, Caputo, Reisz, and Grunwald–Letnikov [2]), each of which
has specific advantages and limitations, particularly when used to define a distribution of
fluxes into a control volume or the effects of fading memory on the forces applied in a free
body diagram. Diethelm [4] incorporated a kernel function and modified a Caputo-type
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fractional-order derivative as

Dα
a f (t) =

∫ t

a
kα(t − ξ)f (m)(ξ)dξ ,

where kα(t − ξ) is the kernel function, and f (m) is themth order derivative. In applications,
kα(t − ξ) takes some specific form, e.g.

kα(t − ξ) = (t − ξ)m−α−1

�(m − α)
.

Wang and Li [5] proposed another form of the fractional derivative with arbitrary kernel
K(t − ξ) (can be chosen freely) over a slipping interval [t − τ , t] as follows:

D(1)
τ f (t) = 1

τ

∫ t

t−τ
K(t − ξ)f ′(ξ)dξ , (3)

where τ (> 0) is called the delay time, which can also be chosen freely. The preceding
modifications of fractional-ordered derivatives are termedmemory-dependent derivatives.
In general, the mth-order memory-dependent derivative of a differentiable function f (t)
relative to the time delay, a>0 is defined as

D(m)
a f (t) = 1

τ

∫ t

t−a
K(t, ξ)f (m)(ξ)dξ ,

where the time delay a denotes thememory scale, and the kernel function K(t.ξ)must be a
differentiable function with respect to its arguments. The kernel function and the memory
scales must be chosen in such a way that they are compatible with the physical problem,
so this type of derivative provides more possibilities to capture the material response [5].
Generally, the memory effect needs weight 0 ≤ K(t − ξ) ≤ 1 for ξ ∈ [t − τ , t] so that the
magnitude of Dτ f (t) is usually smaller than that of the common derivative f ′(t). Simply the
right hand side of (3) is a weightedmean of f ′(t). As ξ ∈ [t − τ , t], one can easily understand
that the function f (ξ) takes value fromdifferent points on the time interval [t − τ , t]. Consid-
ering our present time as t, we can say [t − τ , t) is the past time interval. Thus we conclude
the main feature of MDD, that is the functional value in real time depends on the past time
also. That is why Dτ is called the non-local operator whereas integer order derivative (or
integration) is a local operator (i.e. it does not depend on the past time). The kernel func-
tion K(t − ξ) can be chosen freely, such as 1, [1 − (t − ξ)], [1 − (t − ξ)/τ ]p for any positive
real number p which may be more practical [5]. They are a monotonic increasing function
from 0 to 1 in the interval [t − τ , t]. According to the nature of the problem, one can select
a suitable kernel function of his/her choice.

From the Maxwell–Cattaneo theory [6] to Green–Naghdi generalized thermoelasticity
models [7], it is well established that the thermal memory has a significant role in the
theory of generalized thermoelasticity [8–11]. In the twenty-first century, memory com-
ponents have been introduced in terms of fractional-order derivatives in numerous forms,
see [12–14] for details. In these fractional models of modified heat flux laws, the memory
response is described by the fractional index parameter. The memory-dependent deriva-
tive (MDD) were first incorporated in the Fourier’s law of heat conduction [6], a new
hyperbolic-type heat conduction equation, by Wang and Li [5]. This new generalization of
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hyperbolic-type heat conduction models is accepted as the modified heat conduction law
with measuring memory. Following the work of Wang and Li [5], Yu et al. [15] introduced
MDD in the heat conduction law as

(1 + τDa) qi = −KT
,i, (4)

where Daf (t) = D(1)a f (t).
Later, Ezzat et al. [16,17] introduced the first-order MDD into the rate of heat flux in the

L-S theory [8] to denote memory-dependence as

(
1 + τ0Dτ0

)
qi = −KT
,i, (5)

where τ0 is introduced as the delay time parameter. Equations (4) and (5) provide the fol-
lowing advantages compared with the aforementioned amendments of Fourier’s law by
using fractional derivatives: (1) the influence of memory dependency claims its superiority
in terms of memory scale parameter; (2) in a limiting sense, this simplification develops the
Lord-Shulman model of generalized thermoelasticity; and (3) because the kernel function
and thememory scale parametersmay be chosen subjectively, it ismoremalleable inmany
practical applications. Some recentworks ongeneralized thermoelasticitywithMDDcanbe
found in the literatures [18–20].

Wave propagation and wave reflection phenomena are applicable in various fields like
geophysical exploration,mineral and oil exploration, seismology, etc. The bodywave prop-
agation in thermoelastic solids is applicable in various fields of engineering. Several prob-
lems on plane harmonic wave propagation in coupled and generalized thermoelasticities
have been investigated by many authors during the last five decades. Some of the notable
works among them are found in the literatures [21–30]. Recently, Sarkar et al. [31] studied
thememory response in planewave reflection in generalizedmagneto-thermoelasticity. In
the present contribution, we investigate the reflection of thermoelastic plane waves from
the isothermal stress-free boundary of a homogeneous, isotropic and thermally conduct-
ing solid half-space in the context of the new linear theory of generalized thermoelasticity
underheat transferwithmemory-dependentderivative [14,16]. It hasbeen found that three
types of basicwaves consisting of two sets of coupled longitudinalwaves andone indepen-
dent vertically shear wave may travel with distinct phase speeds. The formulae for various
reflection coefficients are determined in case of an incident coupled dilatational elastic
wave at an isothermal stress-free boundary of the medium considered. For an appropriate
material, the reflection coefficients are computed numerically and presented graphically
for various values of the angle of incidence and discussed the effect of various parameters
of interest. At the end, the phase speeds and the attenuations coefficients of the coupled
longitudinal waves are shown graphically to compare our results with the existing results.

2. Governing equations and formulation of the problem

The basic governing equations for a homogeneous, isotropic and thermally conducting
elastic solid in the context of the generalized thermoelasticity with memory-dependent
derivative heat transfer proposed by Ezzat et al. [14,16], in absence of heat sources and
body forces in general Cartesian coordinates system (x, y, z) are:
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2.1. Stress–strain–temperature relation

τij = 2μeij + (λe − γ
) δij, (6)

where i, j= x, y, z, eij = (ui,j + uj,i)/2 are the components strain tensor, τij and are the
components of the stress tensor, e = ui,i is the cubical dilatation, ui are the displacement
components, λ, μ are Lame’ constants, γ = (3λ+ 2μ)αT is the thermoelastic coupling
parameter and αT is the coefficient of volume expansion.

2.2. Equation ofmotion

μui,jj + (λ+ μ)uj,ij − γ
,i = ρüi, (7)

where ρ is the mass density.

2.3. Heat conduction equationwithmemory-dependent derivative

The classical Fourier’s lawof heat conduction relates the heat flux vector to the temperature
gradient, which can be written in component form as

qi = −KT
,i, (8)

where qi are the components of the heat flux vector.
The energy equation is read from [32] as

ρCE
̇+ γ T0ė = −qi,i, (9)

where CE is the specific heat at constant strain.
From a mathematical viewpoint, Ezzat et al. [14,16] and Yu et al. [15] modified the

Fourier’s law (8) in the theory of generalized heat conduction with memory-dependent
derivative having a time-delay parameter τ as

(1 + τDτ ) qi = −KT
,i. (10)

Taking the memory-dependent derivative with respect to t of Equation (9), we obtain

Dτ
(
ρCE
̇+ γ T0ė

) = −Dτqi,i. (11)

Multiplying Equation (11) by the time-delay τ and then adding to Equation (9), we get

(1 + τDτ )
(
ρCE
̇+ γ T0ė

) = − (1 + τDτ ) qi,i. (12)

Inserting from Equation (10) into the above equation, we have

KTθ,ii = (1 + τDτ )
(
ρCE
̇+ γ T0ė

)
. (13)

The above equation can also be written using the definition of memory-dependent deriva-
tive as

KT
,ii =
(
ρCE
̇+ γ T0ė

) +
∫ t

t−τ
K(t − ξ)

(
ρCE

∂2


∂ξ2
+ γ T0

∂2e

∂ξ2

)
dξ . (14)

Equation (13) or (14) is the generalized heat transport equation with the memory-
dependent derivative having τ as the time-delay. The dynamic coupled theory of heat
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Figure 1. Schematic of the incident and reflected thermoelastic waves at a surface z= 0.

conduction law follows as the limit case when τ → 0. Note that in the above equations,
a comma followed by a suffix denotes spatial derivative and a superposed dot stands for
time-differentiation.

We consider a linear homogeneous, isotropic and thermally conducting elastic medium
occupying the half-space:

� = {(x, y, z) : −∞ < x, y < ∞, 0 ≤ z < ∞}.

Let the origin O of the rectangular Cartesian coordinate system Oxyz be fixed at a point on
the boundary z=0 with the z-axis directed normally inside the medium and the x−axis is
directed along the horizontal direction (see Figure 1). The y-axis is taken in the direction
of the line of intersection of the plane wave front with the plane surface. If we restrict our
analysis to a plane strain problem parallel to the x–z plane, then the field variables may be
taken as functions of x , z and t only. Hence, the displacement components may take the
form

u1 = u(x, z, t), u2 = v(x, z, t) = 0, u3 = w(x, z, t).

Then, Equations (6), (7) and (13) are simplified to

τxx = 2μ
∂u

∂x
+ λe − γ
, (15)

τzz = 2μ
∂w

∂z
+ λe − γ
, (16)

τxz = μ

(
∂u

∂z
+ ∂w

∂x

)
, (17)

μ∇2u + (λ+ μ)
∂e

∂x
− γ

∂


∂x
= ρ

∂2u

∂t2
, (18)

μ∇2w + (λ+ μ)
∂e

∂z
− γ

∂


∂z
= ρ

∂2w

∂t2
, (19)

KT∇2
 = ∂

∂t
(1 + τDτ ) (ρCE
+ γ T0e) . (20)



WAVES IN RANDOM AND COMPLEX MEDIA 7

In our present study, we shall deal with the following kernel function

K(t − ξ) = A + B(t − ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 if A = 1

2 , B = 0,

1
2 −

(
t−ξ
τ

)
if A = 1

2 , B = − 1
τ
,

1 − (t − ξ) ifA = 1, B = −1,

(21)

where A and B are constants.
To transform the above equations in non-dimensional forms, we define the following

non-dimensional variables

(x′, z′) = CLη(x, z), (u′,w′) = CLη(u,w), t′ = C2Lηt, 
′ = γ


ρC2L
, σ ′

ij =
σij

ρC2L
,

where C2L = (λ+ 2μ)/ρ is the speed of classical longitudinal (dilatational) wave and
η = ρCE/KT is the thermal viscosity. Introducing the above parameters in Equa-
tions (15)–(20) and suppressing the primes for convenience, we obtain

τxx = 2β
∂u

∂x
+ (1 − 2β)e −
, (22)

τzz = 2β
∂w

∂z
+ (1 − 2β)e −
, (23)

τxz = β

(
∂u

∂z
+ ∂w

∂x

)
, (24)

β∇2u + (1 − β)
∂e

∂x
− ∂


∂x
= ∂2u

∂t2
, (25)

β∇2w + (1 − β)
∂e

∂z
− ∂


∂z
= ∂2w

∂t2
, (26)

∇2
 = ∂

∂t
(1 + τDτ ) (
+ εe) , (27)

where∇2 ≡ ∂2/∂x2 + ∂2/∂z2,β = μ/(λ+ 2μ) is the ratio of the classical shearwave speed
to the classical longitudinal wave speed and ε = γ 2T0/[ρCE(λ+ 2μ)] is defined as the
dimensionless thermoelastic coupling constant.

Introducing thedisplacementpotentialsφ (corresponds todilatationalwave) andψ (cor-
responds to shear or transversewave) throughHelmholtz vector decomposition technique
as

u = ∂φ

∂x
− ∂ψ

∂z
, w = ∂φ

∂z
+ ∂ψ

∂x
, (28)

and plugging it into Equations (25)–(27), we obtain

∇2φ − ∂2φ

∂t2
−
 = 0, (29)

β∇2ψ − ∂2ψ

∂t2
= 0, (30)

∇2
 = ∂

∂t
(1 + τDτ )

(

+ ε∇2φ

)
, (31)
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Equations (29) and (31) show that the thermal field 
 is coupled with the potential φ and
so create two quasi-thermal-elastic waves, one of them is called a quasi-elastic wave (qP-
wave), while other is called a quasi-thermal wave (qT-wave). Equation (30) creates one
transverse or shear type wave (SV-type wave) which is not affected due to the presence
of thermal field as well as the MDD.

3. Dispersion equation and its solution

To seek the plane harmonic wave solutions of Equations (29)–(31) propagating in the pos-
itive direction of a unit vector n with speed c, the solutions of Equation (29)–(31) may be
assumed as [28,33]

(φ,
,ψ) = (Aφ ,A
,Aψ) exp{ι(kn · r − ωt)}, (32)

where Aφ , A
, Aψ are the constants (possible complex) representing the coefficients of
the wave amplitudes, ι = √−1, k is the dimensionless wavenumber, r (= xî + zk̂) is the
position vector in the x–z plane, ω > 0 is the dimensionless assigned angular frequency.
The quantities k and c are connected with ω through the relation ω = kc.

Substituting from Equation (32) into Equations (29)–(31), we get

(k2 − ω2)Aφ + A
 = 0, (33)(
k2 − ω2

β

)
Aψ = 0, (34)

ιεω(1 + G)k2Aφ + [
k2 − ιω(1 + G)

]
A
 = 0, (35)

where

G ≡ G(τ ,ω) = (Aω + ιB)[1 − exp(ιτω)]/ω − Bτ exp(ιτω). (36)

The condition for the existence of non-vanishing solution for Aφ and A
 of the system of
Equations (33) and (35) yields the following dispersion relation

k4 − L1k
2 + L2 = 0, (37)

where

L1 = ιω(1 + G)(1 + ε)+ ω2, L2 = iω3(1 + G).

The quadratic Equation (37) in k2 is the general dispersion relation for wave propagation in
thermoelastic solid with MDD. Clearly the coefficient L1 and L2 are complex for ω > 0. The
two roots of (37) and the only root of Equation (34) are given by

k22,1 = 1
2

[
L1 ±

√
L21 − 4L2

]
, (38)

k23 = ω2

β
. (39)

Here k21 corresponds to ‘ − ’ sign and k22 corresponds to ‘+’ sign. Out of the four roots
±k1,2, we consider those two roots only for which �(k1,2) ≥ 0 for the waves to be phys-
ically realistic. These two complex wavenumbers give us two distinct types of attenuated
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anddispersive coupleddilatationalwaves: one quasi-elasticwave (qP-wave) andonequasi-
thermal wave (qT-wave). Besides, since the wavenumbers of both qP- and qT-waves are
complex, so they are inhomogeneous waves. The non-dimensional phase speeds, Vj and
the attenuation coefficients,Qj (j = 1, 2) of the qP- and qT-waves can be obtained from the
formulae [28,33]

Vj = ω

�(kj) , Qj = �(kj). (40)

Moreover, it is to be noted that, in the presence of attenuation, Equation (32) can be re-
written as

(φ,
,ψ) = (Aφ ,A
,Aψ) exp{−�(k)n · r} exp{ι (�(k)n · r − ωt)}.

Since the coupled thermal-elastic waves are attenuated in the medium considered, the
above equation shows that the attenuation direction and the propagation direction may
be different in the wave propagation process.

In case of uncoupled thermoelasticity (ε = 0), we found

V1 = 1, V2 =
√
ω

�[ι(1 + G)]1/2
. (41)

Thus, for ε 
= 0, we conclude that while V1 represents the speed of the qP-wave, V2 the
speed of the qT-wave (according to our consideration of the sign of k21 and k

2
2). When ε 
= 0,

the qP-wave and qT-wave are coupled thermal-elastic waves and the coupling is measured
by the following amplitude ratio:

(
A

Aφ

)
j
= (ω2 − k2j ) =

εω(1 + G)k2j[
ω(1 + G)+ ιk2j

] = ζj (j = 1, 2). (42)

Equation (40) shows that there exist one SV-type wave of wavenumber k3 which remains
unaffected by the thermalwave effect. The phase speed, V3 and the attenuation coefficient,
Q3 of this wave are

V3 =
√
β , Q3 = 0, (43)

which clearly indicate that the SV-type wave is non-dispersive as well as experience no
attenuation.

3.1. Perturbation solution of dispersive waves

The perturbationmethodhas beenwidely used (Nayfeh andNemat-Nasser [34], Roychoud-
huri [35], Sharma et al. [24]) to study the wave propagation problems in classical (coupled)
and non-classical (generalized) thermoelastic continua. Here, our aim is to derive the per-
turbation solutions for the roots ±k1,2 in this section. The secular Equation (37) can be
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re-written as

f (k2)− εg(k2) = 0, (44)

where

f (k2) = k4 − k2
[
ιω(1 + G)+ ω2] + iω3(1 + G), g(k2) = ιω(1 + G)k2. (45)

For most of the materials, the thermo-mechanical coupling parameter ε is very small and
therefore, we develop series expansions in terms of ε for the roots k2j (j = 1, 2) of the
Equation (44) in order to explore the effect of various interacting fields on the waves. Thus,
for ε � 1, we obtain from (44) and (45) that

k21(ε) = ω2
[
1 − (1 + G)

(1 + G + ιω)
ε + · · ·

]
, k22(ε) = ιω(1 + G)

[
1 + (1 + G)

(1 + G + ιω)
ε + · · ·

]
.

(46)
Using the perturbation solution (46) into Equation (40), the phase speeds and the attenua-
tion coefficients can be obtained for small ε.

4. Reflection phenomenon of thermoelastic waves

In view of the results of the preceding section, we consider an incident qP-wave which is
propagating obliquely toward the surface z=0 as in Figure 1. Assuming that the radiation
in vacuum is neglected, when it impinges the boundary z=0, three reflected waves in the
medium are created. Suppose the reflected qP-, qT- and SV-type waves make angles θ1, θ2
and θ3, respectively, with positive z-axis. Then the complete structure of the wave fields
consisting of the incident and reflected waves in the medium�may be written as

φ = A0 exp {ιk1(x sin θ0 − z cos θ0)− ιωt} +
2∑

j=1

Aj exp
{
ιkj(x sin θj + z cos θj)− ιωt

}
,

(47)


 = ζ1A0 exp {ιk1(x sin θ0 − z cos θ0)− ιωt} +
2∑

j=1

ζjAj exp
{
ιkj(x sin θj + z cos θj)− ιωt

}
,

(48)

ψ = B1 exp {ιk3(x sin θ3 + z cos θ3)− ιωt}. (49)

where A1, A2 and B1 represent the coefficients of amplitudes of the reflected qP-, qT- and
SV-waves, respectively, and A0 represents the amplitude coefficient of the incident qP-
wavewith phase speed V1. The reflection coefficients are defined as the amplitude ratios of
reflected to the incidentwave andaredeterminedby thewell-definedboundary conditions
on the surface z=0.

4.1. Boundary conditions: stress-free isothermal surface

We consider the surface z=0 as stress-free and isothermal. These conditions may be
mathematically expressed as follows:

τzz = τzx = 
 = 0, at z = 0. (50)
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In terms of potential functions, the first two conditions in (50) can be written as
(
∂2φ

∂z2
+ ∂2φ

∂x2

)
+ 2β

(
∂2ψ

∂x∂z
− ∂2φ

∂x2

)
−
 = 0, (51)

(
2
∂2φ

∂x∂z
+ ∂2ψ

∂x2
− ∂2ψ

∂z2

)
= 0. (52)

In order to satisfy the above boundary conditions at z=0, the following relations between
the angle of the incident wave and the angle of the reflected waves need to be hold on
z=0:

k1 sin θ0 = k1 sin θ1 = k2 sin θ2 = k3 sin θ3, (53)

Equation (53) can also be written in the form

θ0 = θ1 and
sin θ0
V1

= sin θ2
V2

= sin θ3
V3

, (54)

which is often refereed as extended Snell’s law.

4.2. Incident qP−wave at the stress-free isothermal boundary

Substituting from Equations (47)–(49) into (50)–(52) and using the relation (53), the
following system of equations satisfied by the reflection coefficients X1 = A1/A0,
X2 = A2/A0, X3 = B1/A0 of the reflected qP-, qT- and SV-type waves, respectively is
obtained: ⎡

⎣a11 a12 a13
a21 a22 a23
ζ1 ζ2 0

⎤
⎦

⎡
⎣A1/A0
A2/A0
B1/A0

⎤
⎦ =

⎡
⎣−a11

a21
−ζ1

⎤
⎦ , (55)

where

a11 = ω2 − 2βk21 sin
2 θ0, a12 = ω2 − 2βk22 sin

2 θ2, a13 = ω2 sin 2θ3,

a21 = k21 sin 2θ0, a22 = k22 sin 2θ2, a23 = −k23 cos 2θ3.

After solving (55), we get the reflection coefficients as follows:

X1 =

ζ1k22
(
2β2k23 sin

2 θ2 cos 2θ3 − ω2 sin 2θ2 sin 2θ3
)

+k23 cos 2θ3
[
ζ2

(
ω2 − 2β2k21 sin

2 θ0
) − ζ1ω

2
] + ζ2k21

(−ω2
)
sin 2θ0 sin 2θ3

ζ1k22
(
ω2 sin 2θ2 sin 2θ3)− 2β2k23 sin

2 θ2 cos 2θ3
)

+k23 cos 2θ3
[
ζ1ω

2 − ζ2
(
ω2 − 2β2k21 sin

2 θ0
)] − ζ2k21ω

2 sin 2θ0 sin 2θ3

, (56)

X2 = − 2ζ1k21ω
2 sin 2θ0 sin 2θ3

ζ1k22
(
2β2k23 sin

2 θ2 cos 2θ3 − ω2 sin 2θ2 sin 2θ3
)

+k23 cos 2θ3
[
ζ2

(
ω2 − 2β2k21 sin

2 θ0
) − ζ1ω

2
] + ζ2k21ω

2 sin 2θ0 sin 2θ3

, (57)

X3 = 2k21 sin 2θ0 sec 2θ3
[
ζ1

(
ω2 − 2β2k22 sin

2 θ2
) − ζ2

(
ω2 − 2β2k21 sin

2 θ0
)]

k23
[
ζ2

(
ω2 − 2β2k21 sin

2 θ0
) − ζ1

(
ω2 − 2β2k22 sin

2 θ2
)]

+ω2 tan 2θ3
(
ζ2k21 sin 2θ0 − ζ1k22 sin 2θ2

)
)

. (58)
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These expressions exhibit that the reflection coefficients depend on the angle of incidence
(θ0), time-delay parameter (τ ) of MDD and on the material properties of the thermoelastic
medium�.

4.3. Remarks

For uncoupled thermoelasticity, we put ε = 0 which gives ζj = 0 (j = 1, 2). Hence, there
will be no reflected qT-wave in this case. Consequently, X2 = 0 at all angle of incidence θ0.

5. Numerical results and discussions

In this section, we perform somenumerical results in order to illustrate the analytical results
calculated in the previous sections for the reflection coefficients, phase speeds and atten-
uation coefficients. For this purpose, copper like material is modeled as the thermoelastic
material for which the following values of the different physical constants are borrowed
from [16]:

Using theMATLAB software, the variations of the absolute values of the reflection coef-
ficients Xj (j = 1, 2, 3) with respect to the angle of incidence θ0 are presented graphically
through Figures 2–6 for the incident qP-wave at the isothermal stress-free surface z=0.
Using the numerical values given in Table 1, numerically computed values of the reflection
coefficients are plotted with θ0 for the range 0◦ ≤ θ0 ≤ 90◦.

In present work, we devoted to investigate the reflection phenomena of thermoelastic
waves at a stress-free isothermal boundary by considering the memory dependence for
heat transfer with thermal relaxation. The key parameters are the time-delay factor and the
kernel function of the MDD and the thermoelastic coupling parameter ε. As described in
themanuscript, themost advantage of the generalized thermoelasticmodel based on heat

Figure 2. Variations of |Xj| vs. θ0 for different delay times τ when K(t − ξ) = 1/2 − (t − ξ)/τ .
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Figure 3. Variations of |Xj| vs. θ0 for different kernel function, K(t − ξ)when τ = 0.05.

Figure 4. Variations of |Xj| vs. θ0 for different ε when τ = 0.05, K(t, ξ) = 1 − (t − ξ).

transfer with MDD is the free choosing of the delay time factor and the kernel function,
whichmakes it flexible in applications. In the obtained numerical results, we demonstrated
the different effect of the time-delay factor, kernel function and thermoelastic coupling
parameter on the variations of the reflection coefficients of the reflected qP-, qT- and
SV-type wave as follows:
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Figure 5. Effect of τ on the phase speeds, Vj (dimensionless) and the corresponding attenuation coeffi-
cients Qj (j = 1, 2) (dimensionless) vs. non-dimensional angular frequency ω when K(t, ξ) = 1 − (t −
ξ)/τ .

Figure 6. Comparison of Vj (dimensionless) andQj (dimensionless) for theMDD, LS and CT theorieswith
respect toω (dimensionless) for fixed K(t, ξ) = 1 − (t − ξ)/τ .

Figure 2(a–c) shows the profiles of the reflection coefficients, |Xj| with respect to the
angle of incidence θ0 for three values of the delay time τ , namely τ = 0.01, 0.03, 0.05 when
K(t, ξ) = 1/2 − (t − ξ)/τ . It is evident from Figure 2(a) that the reflection coefficient |X1| of
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Table 1. Numerical values of the material constants.

Symbol Value Unit Symbol Value Unit

λ 7.76 × 1010 N/m2 μ 3.86 × 1010 N/m2

T0 293 K ρ 8954 kg/m3

Ce 383.1 m2/K KT 386 N/K s
αT 383.1 K−1 ε 0.0168 −

the reflected qP-wave decreases for 0◦ ≤ θ0 ≤ 65◦ and then increases in 65◦ ≤ θ0 ≤ 90◦
to reach unity for all values of τ . The maximum of |X1| is unity which occurs at θ0 = 0◦
and 90◦. Figure 2(b) exhibits that the reflection coefficient |X2| of the reflected qT-wave
attains itsmaximumat θ0 = 0◦, 90◦. From Figure 2(c), we observed that the reflection coef-
ficient |X3| of the reflected SV-typewave first increases in the range 0◦ ≤ θ0 ≤ 48◦ and then
decreases for 48◦ ≤ θ0 ≤ 90◦ for all τ . It is maximumnear θ0 = 48◦ and vanishes at θ0 = 0◦.
Figure 3(a–c) reveals the profiles of |Xj| with θ0 for three different kernel function, namely
K(t − ξ) = 1/2, 1/2 − (t − ξ)/τ and 1 − (t − ξ) when τ = 0.05. It is evident from these
figures that the qualitative behaviors of the reflection coefficients, |Xj| are similar to those
presented in Figure 2(a–c), respectively.

The key point, noticed from Figures 2(a–c) and 3(a–c) is that while no significant effects
of the delay time factor and the kernel function on the variations of |X1| and |X3| can be
seen, only significant influences of τ and K(t − ξ) can be seen markedly on the variation
of |X2|. This is most probably due to the following mechanism: as shown in Equation (13)
or (14), the MDD are introduced directly into the heat conduction equation instead of the
constitutive equation to characterize the effects of the delay time parameter and the kernel
function on the reflection coefficients of the various reflected waves, which in turn leads to
the consequence that the delay time parameter and the kernel function barely influences
the reflection coefficient, |X2| of the reflected qT-wave.

Figure 4(a–c) is drawn to analyze the influence of the thermoelastic coupling parameter
ε on the profiles of |Xj| at fixed K(t, ξ) = 1 − (t − ξ), τ = 0.05. Here, we take three values of
ε as 0, 0.0168 and 0.0336. We see from these figures that the absolute values of X1 and X2
have large value for large ε, meaning it has an increasing effect on |X1| and |X2|, while it has
a decreasing effect on |X3|. We can also observe from these figures that the influence of the
coupling parameter on |X1| and |X2| is very small as compared to that of |X3|. Another inter-
esting fact is revealed in Figure 3(b) that the reflection coefficient X2 vanishes identically
at each θ0 for ε = 0 (uncoupled thermoelasticity) which is in complete agreement with our
analytical results obtained in subsection 4.3.

Figures 2–4 reveal that the reflection coefficient |X2| of reflected qT-wave is very small
as compared to the absolute values of the reflection coefficients of the reflected qP- and
SV-type waves. Thus the energy carried along the reflected qT-wave is the least which in
turnmeans that maximum amount of the incident energy is carried along the reflected qP-
and the SV-type waves.

The dependence of the dimensionless phase speeds, Vj and the corresponding attenu-
ation coefficients, Qj (j = 1, 2) of the qP- and qT-waves, respectively, on the dimensionless
angular frequency ω is expressed through Figure 5(a–d) with the variation of τ . Follow-
ing Chadwick and Sneddon [36], we have selected the range of the dimensionless ω as
1 ≤ ω ≤ 10. Figure 5(a,b) depict that the phase speed, V1 of the qP-wave is smaller than
the phase speed, V2 of the qT-wave in the entire range of ω. The phase speed V1 decreases
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while V2 increases as ω increases for all values of τ . Figure 5(c,d) exhibits that the qP-wave
is less attenuated when compared to the attenuation of the qT-wave. From these figures, it
appears that the qP- and qT-waves are dispersive in nature as well as attenuated which are
the verification of the analytical results pointed out in the text in Section 3.

Figure 6(a–d) is drawn in order to compare Vj andQj for theMDD, Lord-Shulman (LS) and
the coupled thermoelasticity (CT) [32] theories. It is observed from Figure 6(a,b) that the
values of Vj are found to be larger for the CT theory while that are found to be smaller for
the LS theory. Similar patterns are noticed for the corresponding attenuation coefficients
in Figure 6(c,d) for all the theories. It is also clear from the graphs that the phase speeds
and the attenuation coefficients of the qP- and qT-waves, respectively, reveal qualitatively
similar nature for the MDD, LS and CT theories, however, dissimilarity lies on the ground of
numerical values.

6. Conclusions

In this manuscript, the significance of the selected kernel and the time-delay parameter of
MDD on plane harmonic wave propagation in a homogeneous, isotropic solid conducting
heat, has been studied by applying the new linear theory of generalized thermoelasticity
based on the heat conductionwithMDD. The following points can be concluded according
to the analysis above:

(1) The reflection coefficients dependon the angle of incidence,MDDand the thermoe-
lastic coupling parameter.

(2) The time-delay and the kernel functionmarkedly affect the reflection coefficients of
the reflected qT-wave only.

(3) The reflection coefficient of the reflected qT-wave is highly influenced by the ther-
moelastic coupling parameter as compared to the others.

(4) The time-delay reveals a strongeffect on thephase speeds and the attenuation coef-
ficients of the qP- and qT-waves. The phase speed and the attenuation coefficient
of the SV-type wave is independent of the time-delay and the kernel function.

(5) It is observed that the present new theory of thermoelasicity with MDD supports
the finite speed of the thermal wave (qT-wave) propagation through the medium.
Hence, this theory is indeed a generalized theory of thermoelasticity. The present
work is verymuch expected to be useful for investigating variouswave propagation
problems: both theoretically and in observation of wave propagation. In particular,
the present work is of geophysical interest for investigations on earthquakes and
similar phenomena in seismology and engineering where ‘MDD may play a signifi-
cant role’.We also hope that our present theoretical resultsmayprovide someuseful
information for experimental scientists, researchers, and seismologists working on
wave propagation problems in thermoelastic solid.

Acknowledgements

The authors would like to gratefully acknowledge the Editor and the anonymous referee for their
suggestions and comments to improve the manuscript. They also gratefully acknowledge Professor
Samiran Ghosh (Department of Applied Mathematics, University of Calcutta, Kolkata-700009, India.)
for his valuable suggestions in preparing the revised version of the manuscript.



WAVES IN RANDOM AND COMPLEX MEDIA 17

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Nihar Sarkar https://orcid.org/0000-0003-2657-5577
Soumen De https://orcid.org/0000-0001-8988-3679
Nantu Sarkar http://orcid.org/0000-0001-9144-4587

References

[1] Mainardi F. Fractional calculus andwaves in linear viscoelasticity. London: Imperial College Press;
2010.

[2] Gorenflo R,Mainardi F. Fractional calculus: Integral anddifferential equationsof fractional orders.
Wien: Springer; 1997. Fractals and Fractional Calculus in ContinuumMechanics.

[3] Atanacković TM, Pilipović S, Stanković B, ZoricaD. Fractional calculuswith application inmechan-
ics. London: Wiley; 2014.

[4] Diethelm K. Analysis of fractional differential equation: an application oriented exposition using
differential operators of Caputo type. Berlin: Springer; 2010.

[5] Wang J-L, Li H-F. Surpassing the fractional derivative: concept of thememory-dependent deriva-
tive. Comput Math Appl. 2011;62:1562–1567.

[6] Cattaneo C. Sur une forme de l’equation de la chaleur eliminant le paradoxe d’ure propaga-
tion instantaneee [On a form of the heat equation eliminating the paradox of the instantaneous
spread] [In French]. Comptes Rendus Acad Sci. 1958;2:431–433.

[7] Green AE, Naghdi PM. A re-examination of the basic postulates of thermomechanics. Proc Roy
Soc London Ser A. 1991;432:171–194.

[8] Lord HW, Shulman Y. A generalized dynamical theory of thermoelasticity. J Mech Phys Solids.
1967;15:299–309.

[9] Green AE, Lindsay KA. Thermoelasticity. J Elast. 1972;2:1–7.
[10] Green AE, Naghdi PM. On undamped heat waves in an elastic solid. J Therm Stresses.

1992;15:253–264.
[11] Green AE, Naghdi PM. Thermoelasticity without energy dissipation. J Elast. 1993;31:189–208.
[12] Sherief HH, El-Sayed A, El-Latief A. Fractional order theory of thermoelasticity. Int J Solids Struct.

2010;47:269–275.
[13] Youssef H. Theory of fractional order generalized thermoelasticity. J Heat Transfer. 2010;132:

061301. doi:10.1115/1.4000705
[14] Ezzat MA, Fayik MA. Fractional order theory of thermoelastic diffusion. J Therm Stresses.

2011;34:851–872.
[15] Yu Y-J, Hu W, Tian X-G. A novel generalized thermoelasticity model based on memory-

dependent derivative. Int J Eng Sci. 2014;81:123–134.
[16] Ezzat MA, El-Karamany AS, El-Bary AA. Generalized thermo-viscoelasticity with memory-

dependent derivatives. Int J Mech Sci. 2014;89:470–475.
[17] Ezzat MA, El-Karamany AS, El-Bary AA. A novel magneto-thermoelasticity theory with memory-

dependent derivative. J Electromagn Waves Appl. 2015;29:1018–1031.
[18] Ezzat MA, El-Karamany AS, El-Bary AA. Modeling of memory-dependent derivatives in general-

ized thermoelasticity. Eur Phys J Plus. 2016;131:131–372.
[19] Lotfy Kh, SarkarN.Memory-dependent derivatives for photothermal semiconductingmedium in

generalized thermoelasticity with two-temperature. Mech Time-Depend Mater. 2017;21:15–30.
[20] Sarkar N, Ghosh D, Lahiri A. A two-dimensional magneto-thermoelastic problem based on a

new two-temperature generalized thermoelasticity model with memory-dependent derivative.
Mech Adv Mater Struct. 2018. DOI:10.1080/15376494.2018.1432784

[21] Sharma JN, Kumar V, ChandD. Reflection of generalized thermoelastic waves from the boundary
of a half space. J Therm Stresses. 2003;26:925–942.

https://orcid.org/0000-0003-2657-5577
https://orcid.org/0000-0001-8988-3679
http://orcid.org/0000-0001-9144-4587
http://doi.org/10.1115/1.4000705


18 N. SARKAR ET AL.

[22] Das NC, Lahiri A, Sarkar S, Basu S. Reflection of generalized thermoelastic waves from isothermal
and insulated boundaries of a half space. Comput Math Appl. 2008;56:2795–2805.

[23] OthmanMIA, Song Y. Reflection ofmagneto-thermoelastic waves with two relaxation times and
temperature dependent elastic moduli. Appl Math Model. 2008;32:483–500.

[24] Sharma JN, Grover D, Kaur D. Mathematical modelling and analysis of bulk waves in rotating
generalized thermoelastic media with voids. Appl Math Model. 2011;35:3396–3407.

[25] Allam MNM, Rida SZ, Abo-Dahab SM, Mohamed RA, Kilany AA. GL model on reflection of P
and SV-waves from the free surface of thermoelastic diffusion solid under influence of the
electromagnetic field and initial stress. J Therm Stresses. 2014;37:471–487.

[26] Biswas S, Sarkar N. Fundamental solution of the steady oscillations equations in porous thermoe-
lastic medium with dual-phase-lag model. Mech Mater. 2018;126:140–147.

[27] Li Y, Wang W, Wei P, Wang C. Reflection and transmission of elastic waves at an interface with
consideration of couple stress and thermal wave effects. Meccanica. 2018;53:2921–2938.

[28] Sarkar N, Tomar SK. Plane waves in nonlocal thermoelasticsolid with voids. J Therm Stresses.
2019;42:580–606.

[29] Mondal S, Sarkar N. Waves in dual-phase-lag thermoelastic materials with voids based on
Eringen’s nonlocal elasticity. J Therm Stresses. 2019. DOI: 10.1080/01495739.2019.1591249

[30] Das N, Sarkar N, Lahiri A. Reflection of plane waves from the stress-free isothermal and insulated
boundaries of a nonlocal thermoelastic solid. Appl Math Model. 2019;73:526–544.

[31] Sarkar N, De S, Sarkar N. Memory response in plane wave reflection in generalized magneto-
thermoelasticity. J Electromagn Waves Appl. 2019;33:1354–1374.

[32] Biot M. Thermoelasticity and irreversible thermodynamics. J Appl Phys. 1956;27:240–53.
[33] Achenbach JD. Wave propagation in elastic solids. New York (NY): North-Holland; 1976.
[34] Nayfeh AH, Nemat-Nasser S. Electromagneto-thermoelastic plane waves in solids with thermal

relaxation. J Appl Mech. 1972;39:108–113.
[35] Roychoudhuri SK. Effects of rotation and relaxation times on plane waves in generalized ther-

moelasticity. J Elast. 1985;15:59–68.
[36] Chadwick P, Sneddon IN. Plane waves in an elastic solid conducting heat. J Mech Phys Solids.

1958;6:223–230.


	1. Introduction
	2. Governing equations and formulation of the problem
	2.1. Stress–strain–temperature relation
	2.2. Equation of motion
	2.3. Heat conduction equation with memory-dependent derivative

	3. Dispersion equation and its solution
	3.1. Perturbation solution of dispersive waves

	4. Reflection phenomenon of thermoelastic waves
	4.1. Boundary conditions: stress-free isothermal surface
	4.2. Incident qP- wave at the stress-free isothermal boundary
	4.3. Remarks

	5. Numerical results and discussions
	6. Conclusions
	Acknowledgements
	Disclosure statement
	ORCID
	References

